My Dear Aunt Sally

sq_my_dear_aunt_sallyWhen I took first year algebra in school, I learned the rule “My Dear Aunt Sally” as a mnemonic for the order of applying binary operations in algebraic expressions. “My Dear” meant to perform multiplication and division first. “Aunt Sally” meant to perform addition and subtraction next and last. Most of us have learned some variation of this rule. I see that it has now been enlarged to “Please Excuse My Dear Aunt Sally” to include parentheses and exponentiation, and to perform these two first before the original and now last four.

Why remark about this simplistic and even obsolete rule? Note the similarity between this fourfold of binary arithmetic operators and the four binary linear logic operators. In each there are two operators for combining: addition and multiplication in arithmetic, and the conjunctive operators with and tensor in linear logic. In each there are two operators for separating: subtraction and division in arithmetic, versus the disjunctive operators plus and par in linear logic. In each there are two rules for attraction and two rules for repulsion.

In addition, the double duality of the four arithmetic operators is revealed, as in arithmetic addition and subtraction are duals, and multiplication and division are duals. In linear logic, with and plus are duals, and tensor and par are duals. Can arithmetic be simulated by linear logic, or vice versa? Is linear logic equivalently exchangable with arithmetic? I don’t think so but perhaps some expert can tell us.

References:

http://en.wikipedia.org/wiki/Order_of_operations

[*7.94]

<>

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s


%d bloggers like this: